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A simple evolutionary model is introduced for neural development along the lines
of the Bak-Sneppen model for biological evolution of an ecology. The model rep-
resents a set of neurons and their connections together with associated synaptic
weights. Evolution of the system is studied for different model fitness functions
of the synaptic weights. The model systems exhibit Darwinian evolution of the
synaptic weight space towards maturation.

1 Introduction

Until recently the biological contribution to learning was thought to be an unfolding

according to an intrinsic schedule 1,2. However, evidence now indicates that the
developing cerebral cortex is largely free of domain-specific structure 3,4 and the
representational properties of the cortex are built by the nature of the problems

confronting it.
At the neurobiological level, learning stems from the interaction between in-

trinsic growth and environmentally derived activity '. Two factors that are fun-
damental for this interaction are selection and variance. Selection 5 has two
distinct stages. The first stage constructs "pre-representations". The second stage

selectively eliminates certain of these representations. The most fit representations
survive to underlie mature skills.

Variation is important for the development of a maximally flexible representa-

tion capacity. The florid growth of neural tissues in ontogeny 4: synapses; axonal

and dendritic arborisation represents one possibility for introducing a significant
chance element to learning. Representations are consolidated by a gradual increase
in the synaptic weights of preferred units (synaptic weight space). The widely
accepted mechanism for such consolidation is Hebbian learning via positive rein-

forcement. At the neural net level, Hebbian learning follows from the covariance
of pre- and post-synaptic discharges. At the circuit level, it involves synergy of
oscillators involved in common function. Synapses which do not participate in the
maintenance of circuits are eliminated.

Selectivity and variability are also important aspects of biological evolution.
One of the simplest models for biological evolution is the Bak-Sneppen model 9.
In this model evolutionary activity is simulated through random mutations of the
least fit species and its neighbours. A characteristic feature of this model is that it

exhibits Self-Organized Criticality whereby the system evolves through a succession
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of punctuated equilibria to a state where almost all species have fitness above a
threshold level.

In this paper we have introduced new variants of the Bak-Sneppen model to
investigate the evolution of synaptic weight space towards maturation in simple
models for neural development.

2 Neural Connectivity Model

Consider a set of n units (neurons) labelled 1,2,3,...,n on a periodic one-
dimensional lattice, i.e., units k + 1 and k - 1 are neighbours of unit k which
is equivalent to unit n + k. Associated with each unit k we identify a set of c(k)
connections (synapses). Two versions of the models are studied. One in which the
number of connections is kept fixed (c(k) = m) and the other in which the number
of connections (for the least fit unit and its two neighbours) is selected at random,
(c(k) E [1, in]) at each update step. We have in mind that the former situation will
be easier to investigate theoretically whereas the latter will be more representative
of a model neural system. Let cj (k) denote the jth connection associated with unit
k and identify a corresponding synaptic weight a < wj (k) • b. Pre-representations
are introduced by choosing the synaptic weight for each connection at random from
a uniform distribution in the range [a, b]. Initially we suppose that the system is
fully connected, i.e., initially c(k) = mn for all k. There is no discernible difference
in the long term results whether or not the system is initially randomly connected.
Selection and variation in the system is modelled by replacing the least fit unit
and its two neighbours by new units with new randomly assigned connections and
weights.

Three different models have been examined. In Model A the weights are random
numbers in the range [0, 1] and the fitness of a unit is defined as the minimum weight
for that unit. In Model B the weights are random numbers in the range [-1, 1] and
the fitness of a unit is defined as the average of the weights for that unit. In Model
C the weights are again random numbers in the range [-1, 1] but the fitness is
defined as the sum of the weights. The choice of the range [-1, 1] in the latter two
models is to include the possibility of both excitatory and inhibitory synapses. In
each model the steps in the update procedure are as follows:

1. Set up the pre-representations which are fully connected with random synaptic
weights.

2. Calculate the fitness for each unit and identify the unit with the lowest fitness.

3. For the least fit unit and each of its neighbouring units reset the number of
connections depending on the variant of the model and assign new weights at
random from a uniform distribution on [a, b].

4. Return to step 2 and continue for N updates.

Model A with mn = 1 is the Bak-Sneppen model. The transient behaviour of
this model is characterized by punctuated equilibria as the system evolves towards
a statistically stationary state in which the density of weights in the system with
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Figure 1. Snapshot of the stationary state for Model A with m = 2 and fixed numbers of connec-
tions.

w < w* vanishes. The critical weight w* - 0.66702 ±-0.00003 10 is referred to as the
self-organized threshold. A plot of the largest value of the minimum weight after
s updates versus s reveals a staircase structure where the average length of a step
in the staircase scales as a power law distribution. The change in the minimum
weight across a level step in the staircase is referred to as an avalanche 9.

3 Simulations

Simulations of the models have been carried out for n = 100 units and s = 106
updates over a range of values of the maximum number of connections m G [1, 210];
both for fixed number of connections and for random numbers of connections (up to
the maximum m). To facilitate the discussion of these results let f m (s) denote the
fitness of the least fit unit after the sth update in a model where in is the maximum
number of connections.

In all cases the transient behaviour exhibits punctuated equilibria and the long
term behaviour is highly correlated with almost all fitness values above a critical
value. Figure 1 shows the weights for each unit plotted against the unit number in
the 'stationary state', after 10' updates, in Model A with in = 2 and the number
of connections fixed. Except for the localized avalanche, all weights are above
the limiting threshold weight. Similar long term trends are found in all cases
independent of m (compare for example, Figure 1 of 11 which shows a similar
plot for the original Bak-Sneppen model), however the magnitude of the limiting
threshold fitness is in dependent.

The transient behaviours with their characteristic punctuated equilibria are
shown for each of the models in Figures 2a,2b,3a,3b,3c. These figures show plots of
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Figure 2. Devil's staircase structure for Model A; (a) fixed numbers of connections, (b) random
numbers of connections.

the maximum value of the minimum fitness after s updates,

A (m, s) = max fm(s),
[0,s]

versus s. In each horizontal step of the staircase structure in these figures the
minimum fitness remains less than this threshold value. A rise in the staircase
occurs when the minimum fitness exceeds this threshold value. The case of Model
B with fixed numbers of connections was not simulated because this is the same
as Model C with fixed numbers of connections apart from the scale factor m (see
further comments below).

In Models A and B the limiting threshold fitness,

A*(m) = lim maxfm(s),
S--oo [0,1

decreases with an increase in the maximum number of connections m. In Model C
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Figure 3. Devil's staircase structure; (a) Model B with random numbers of connections; (b) Model
C with fixed numbers of connections, (c) Model C with random numbers of connections.
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Figure 4. Plot of the limiting threshold fitness versus the maximum number of connections m: (a)
Model A with fixed numbers of connections; (b) Model A with random numbers of connections;
(c) Model B with random numbers of connections; (d) Model C with fixed numbers of connections;
(e) Model C with random numbers of connections.

the opposite is true. Figure 4 shows plots of the limiting threshold fitness A*(m)
versus m for each of the models. The error bars in the plots are based on data
from ten runs of each model and the lines are ensemble averages. From these plots
we note that for large m: A*(m) - -for Model A; A*((m) - 1 - for Modelw e n t h a o a r e r : • * r ) • m -_

B; and A*(m) - @ - for Model C. For Model A the limiting value A*(1) is the
Bak-Sneppen self-organized criticality threshold value 0.66702.... For models B
and C the limiting value A*(1) P 2 x 0.66702 - 1 = 0.33404.

4 Scaling Analysis

The functional relationships between the limiting threshold fitness (the self-
organized threshold) and the maximum numbers of connections can be obtained
using simple probabilistic arguments. To this end (following 12) we first define the
avalanche probability function, P\(m) (s) as the probability for an avalanche with
threshold fitness A(m) which starts at k = 0 to end at k = s. It follows immedi-
ately from the definition that PA(m)(0) = 0. In Model A, the probability for the
avalanche to end at step k + 1 is

P\A(m)(k + 1) = (1 - P\,A(m)(k))(1 - AA(mrn)) 3m. (1)

The first factor on the right hand side is the probability that the avalanche did
not stop at the earlier step k and the factor (1 - AA(M))3m is the probability of
independently selecting new fitness values at random from a uniform distribution
for each of the 3m connections, for the least fit unit and its two neighbours, above
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the threshold fitness AA (m). It is a straightforward exercise to obtain the solution
to the difference equation, Eq.(1). The solution for initial condition P A(m)(0) = 0
is

PAA(m)(k) 1 1 (- AA ( m)) (1- (- 1 )k(1 - AA(mn))3,k). (2)

At the limiting threshold values A (in) we anticipate that the avalanche proba-
bilities PA.(in)(k) are independent of m. In particular by equating PA (i)(k) =

P,\(,) (k) we obtain the relation

A*(m) = 1 - (I - •A*(1)), (3)

where A*(1) is the limiting threshold fitness for the Bak-Sneppen model. The
agreement between Eq. (3) and the values plotted in Figure 4 is summarized in
Table 1.

We now consider the scaling relation for model C. In this case the avalanche
probabilities are determined by the equation

PAc(.)(k + 1) = (1- PAc(rn)(k))(1 - b ( ACf()) 3  (4)

where

4 (x) = • _exp - dz.

The second factor on the right hand side of Eq.(4) follows from the Central Limit
Theorem. For sufficiently large m, the sum Y(m) of m random numbers from a
uniform distribution with zero mean and variance a 2 is a Gaussian random variable
Z with zero mean and variance mar2 . Hence the probability of randomly selecting
the sum Y(m) Ž A'c(m) is equal to the probability of selecting the Gaussian random
variable Z > A•--. This probability is given by

1_( Ac(m))

The solution of Eq.(4) for initial condition PA, (i)(0) = 0 is

(I5 (5(Ac)))3/

PAc(m)(k) =1- (1 - o (A(m) (1_()k(_ AC(r) )3k) (5)
1+ (1 -@ \----))

The avalanche probabilities given by Eq. (5) are approximations based on the Cen-
tral Limit Theorem which holds with increasing accuracy as m increases. The ap-
proximation is already reasonable for m > 2 but it does not hold in the case in = 1
where the sum over m random numbers from a uniform distribution on [-1, 1] is
simply the uniform random variable. In this case the probability for choosing a ran-
dom variable greater than Ac(1) is (1 - Ac(1))/2 so that the avalanche probability
is given by

P ~ =1 k 1_CL (1 _- (--I_)k (1 - Ac() ) 3k) (6)
S(1-AC(1))3 2

1 2 (
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Table 1. Comparison between limiting threshold fitness values; A(m) obtained from the numerical
simulations, and A(rm) obtained from the theoretical scaling relations Eqs.(3,7). The percentage
difference between these values is also shown.

m A*(m) A*(m) % diff. A*(m) A(m) % diff.

1 0.67789 0.67789 0.00 0.35751 - -

2 0.43259 0.43245 0.03 0.39351 0.39351 0.00
4 0.24769 0.24664 0.42 0.55863 0.55650 0.38
8 0.13330 0.13203 0.95 0.77354 0.78701 1.74
16 0.06815 0.06835 0.29 1.07521 1.11300 3.51
32 0.03501 0.03478 0.65 1.52210 1.57402 3.41
64 0.01774 0.01754 1.13 2.17175 2.22601 2.50
128 0.00884 0.00881 0.36 3.01230 3.14805 4.51
256 0.00442 0.00441 0.29 4.29448 4.45201 3.67
512 0.00222 0.00221 0.53 6.09033 6.29610 3.38
1024 0.00111 0.00110 0.47 8.49563 8.90402 4.81

The limiting threshold value for m = 1 in Model C is given by A*(1) = 2A*(1) - 1.
To obtain the scaling behaviour with m of the limiting threshold values A* (m) for
m > 2 we now equate PA (m)(k) = PA.( 2)(k) which yields

A* (m) = ý V (2). (7)

The good agreement between the A*(m) values plotted in Figure 4 for m > 2 and
Eq.(7) is summarized in Table 1.

The scaling behaviour in the ease of model B can be obtained by repeating the

analysis for model C but replacing ,D (•/•-)) by b (_'--A_()) since the average

of m random numbers from a uniform distribution with zero mean and variance
a 2 is a Gaussian random variable with zero mean and variance r2 . This yields the
scaling result

A* (m)= -2Aý (2). (8)

5 Discussion

The simple evolutionary models for neural development introduced in this paper
attempt to model the chance aspect of learning via Darwinian evolution. All models
exhibit Darwinian evolution of the synaptic weight space towards maturation where
almost all neurons have fitness levels above a threshold value.

It is anticipated that the maximum number of connections scales with memory
and learning. With this interpretation the 'fitness' functions in each of the models
needs some clarification since from Figure 4 and the scaling analysis above we
see that only Model C exhibits an increase of fitness with increasing memory and
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learning. On this basis the fitness function in Model C is more representative
of learning and memory than the fitness function in Models A and B. However a
fitness function that scales with memory and learning can also be recovered from the
present fitness function in models A and B simply by multiplying by an appropriate
monotonically increasing function of m. For example multiply by m 1 where; -Y > 1
for Model A, 7y > 1/2 for Model B, and -y > 0 for Model C.

It is interesting that the scaling relations: A* (m) - 1/m, A 5(m) - 1/1v- and
A* (m) - vf which were derived in the theoretical analysis (and obtained numeri-
cally) for the case of fixed numbers of connections are also obtained in our numerical
simulations when the numbers of connections is selected at random (for the least
fit unit and its neighbours) in each update. With the appropriate interpretation
of fitness as above, for a fixed maximum number of connections, we find that the
neurons self-organize themselves to operate at increasing fitness whilst at the same
time decreasing the numbers of active connections. The scaling analysis of this
reduction in the number of active connections with increasing fitness is deserving
of further studies.

Towards the end of this study we became aware of the neuronal model of self-
organized learning recently introduced by Chialvo and Bak 1'. Our models are
similar to their model to the extent that memory and learning is consolidated via
Darwinian elimination of the least fit units rather than via Hebbian re-inforcement
of the most fit units. On the other hand our models are more crude than the
Chialvo-Bak model since we do not include the dynamics of firing in our models.
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